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Abstract

We study the possibilities for agenda manipulation under strategic vot-
ing for two prominent sequential voting procedures, the amendment and
the successive procedure. We show that a well-known result for tourna-
ments, namely that the successive procedure is (weakly) more manipulable
than the amendment procedure at any given preference profile, extends to
arbitrary majority quotas. Moreover, our characterizations of the attain-
able outcomes for arbitrary quotas allow us to compare the possibilities for
manipulation across different quotas. It turns out that the simple majority
quota maximizes the domain of preference profiles for which neither pro-
cedure is manipulable, but at the same time neither the simple majority
quota nor any other quota uniformly minimize the scope of manipulation,
once this becomes possible. Hence, quite surprisingly, simple majority vot-
ing is not necessarily the optimal choice of a society that is concerned about
agenda manipulation.
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†MOVE, Universitat Autònoma de Barcelona and Barcelona GSE, Facultat d’Economia i

Empresa, Edifici B, 08193 Bellaterra (Barcelona), Spain; e-mail: salvador.barbera@uab.cat.
‡Department of Economics, University of Hamburg, Von-Melle-Park 5, D-20146 Hamburg,

Germany; e-mail: anke.gerber@wiso.uni-hamburg.de.

1



1 Introduction

Many societies and institutions, when choosing among alternatives, resort to

sequential (multi stage) decision procedures, whereby different voters can deter-

mine, in a sequence of different steps, which alternatives are definitely out and

which ones retain a chance to be considered again, until one of them is definitely

selected. In this paper we study two families of classical methods of that sort, the

amendment and the successive elimination procedures, both of which are used

extensively in many parts of the world.1

It is known since ancient times2 that the order in which different alternatives

are considered along a sequential decision procedure can affect the final choice

that a given society may reach, even if the preferences of its members stay the

same. Therefore, setting the agenda is a very influential decision, and whoever

controls the order of vote often has the possibility to engage in agenda manipu-

lation, that is, of determining what will be the outcome of the choice process.3

That power is not absolute, however, since there may be cases where any agenda

would lead to the same outcome, as long as the rest of features defining a rule

remains unchanged, and others where the range of choices that may be obtained

is limited to some subset of all possible alternatives. In this paper we analyze the

extent to which, given the preferences of voters and assuming strategic voting, an

agenda setter could choose among several outcomes, and exactly what these out-

comes may be in each voting situation. This is well-known for the special case of

tournaments, for which Miller (1977) showed that the set of alternatives that are

1Precise definitions of these rules are provided in section 2. These rules were named by

Farquharson (1969) and then studied by Miller (1977, 1980) in the special but important

case where decisions are made by simple majority. A recent axiomatic characterization is in

Apesteguia et al. (2014). The relevance of these methods in parliamentary practice, and their

use in different countries is discussed in Rasch (2000).
2See the Letter to Titus Aristo by Pliny the Young (A.D. 105) reproduced in McLean

and Urken (1995). Farquharson’s path-breaking book (1969) uses that letter extensively for

motivation and analysis.
3We concentrate on manipulations that involve changes in the order of vote, while keeping

the same set of alternatives. Other forms of agenda manipulation involve the addition of new

items to the agenda, or the removal of some alternatives. This has been studied, among others,

by Dutta et al. (2004) and Duggan (2006).
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attainable by the successive procedure coincides with the top cycle and for which

Banks (1985) provided a characterization of the attainable set for the amendment

procedure which became to be known as the Banks set. However, to the best of

our knowledge we are the first to provide characterizations of the sets of attain-

able alternatives for all possible majority quotas applied to the amendment and

the successive voting procedure. Our characterizations differ from those of Miller

(1977) and Banks (1985) and hence are no straightforward extensions from the

case of tournaments to arbitrary quotas. Moreover, our general characterization

results allow us to compare the power of the agenda setter across different quo-

tas. This is not only relevant for institutional design but it is also the basis for a

potential extension of the analysis of self-stable majority rules and constitutions

from binary to arbitrary finite choice sets (Barberà and Jackson, 2004).

The exact characteristics of a sequential voting rule are determined by com-

bining several ingredients. The first one is what we can call a tree form, which

determines two aspects of the sequential process. One is the number and the na-

ture of actions that agents can take at any node, starting from an initial one, until

a terminal node is reached at the end of each path. But since one and only one

alternative will eventually be attached to each terminal node, in order to define

trees, a tree form is also defined by any restriction that may be imposed on the

possible assignment of the same alternative to different terminal nodes. The two

families of procedures we study here are based on binary tree forms, where each

non-terminal node has two successors. The second ingredient defining a sequen-

tial rule is the agenda, that is, the specific assignment of alternatives to terminal

nodes, respecting the restrictions imposed by the tree form. That assignment

determines what choices will be made by society after following the possible path

that leads to each terminal node. In all the cases we study, an agenda is just

an order over the alternatives, because we provide specific and unique rules that

translate each possible order into a unique admissible assignment of alternatives

to the terminal nodes of the tree forms that we consider. A tree is then given by a

tree form and by an agenda. Now, in order to turn a tree into a sequential voting

rule, we must specify how will the different members of a voting body influence

the choice of paths along the tree. Since we are working with binary trees, and

we want to consider methods that treat all agents on the same foot, we consider

3



as possible methods all those that are defined by a quota q, with q between 1 and

the number of voters. When confronted with two choices at any node, society

will move to a pre-specified follower of that node if at least q people vote for it,

and will otherwise take the opposite path.4

A sequential voting rule will thus be fully specified once we have a tree and

a quota. Of course, a voting rule is defined independently of the preferences

that may be held by different agents regarding the alternatives. It sets the rules

through which agents will be able to contribute to the social decision. But in

order to study the behavior of different agents under these rules, we need to know

what their preferences will be. And then, given a profile of preferences, we’ll have

all the elements to study the strategic behavior of those agents. A tree and a

quota then provide a game form, and when we add to them a preference profile

we have a game.

Although our motivation is to study the strategic behavior of voters under

these sequential rules, it turns out that most of our analysis can be carried out

by just knowing a dominance relation among alternatives that generalizes the

notion of a tournament, and that can be used to represent the preferences of

society. Whereas a tournament is any complete and asymmetric relation over

alternatives, the binary relations generated by comparing alternatives according

to quotas different than simple majority give rise to relations that may fail one

of these two properties. Moreover, some relations that are either complete, but

not asymmetric, or asymmetric and not complete, may never be obtained as

the dominance relation induced by a quota and a preference profile. Yet, our

main characterization results still hold for this larger class of social preferences.

Because of that, our work can also be understood as a natural extension of

tournament theory, and the sets we identify can be compared to the different

solution sets proposed for tournaments and for their extensions (Miller, 1977 and

1980; Shepsle and Weingast, 1984; Banks, 1985; Moulin, 1986; Banks and Bordes,

1988; Laslier, 1997).

We first provide characterizations of the unique equilibrium outcomes ob-

tained by iterative elimination of weakly dominated strategies for each of the two

4As we shall see later, this description implicitly implies the choice of a criterion to break

ties, when these arise.
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families of games we consider. We then use these characterizations to identify

the sets of alternatives that could be the outcome of games that share the same

tree form and the same rule to choose among nodes, but differ on the agenda.

Comparisons among these sets allow us to discuss the degree of agenda manip-

ulability of different rules in our classes. It turns out that both procedures are

non-manipulable on the same set of preference profiles, namely those profiles for

which there exists a (generalized) Condorcet winner, i.e. an alternative that dom-

inates all others and in turn is not dominated. Moreover, if there is no Condorcet

winner, then the successive procedure is more vulnerable towards agenda manip-

ulation than the amendment procedure in the following sense: at any preference

profile (or more generally, for any dominance relation), any outcome that can be

achieved for some agenda under the amendment procedure can also be achieved

by some agenda under the successive procedure, while the reverse is not true in

general. While this result was already known for tournaments given the charac-

terizations of Miller (1977) and Banks (1985), we are able to show that it holds

for all quotas.

Comparing different quotas under the same sequential voting procedure we

find that the set of preference profiles which do not allow for manipulation is max-

imized at simple majority voting and is otherwise weakly decreasing (increasing)

in the quota for supermajority (submajority) quotas. This gives some support

for simple majority voting if the possibility of agenda manipulation is a concern.

On the other hand, if at a given preference profile there are opportunities for

agenda manipulation under simple majority voting, then there is no quota that

uniformly minimizes the degree of manipulability, neither for the successive nor

for the amendment procedure. There are even cases where a submajority quota

minimizes the possibilities for manipulation.

The outline of the paper is the following. In section 2 we introduce general

binary voting games and derive the equilibrium outcome of the voting game for

the amendment and sequential procedure at a given agenda. In sections 3 and 4

we characterize the set of outcomes that can be obtained by agenda manipulation

for the amendment and sequential procedures. In section 5 we compare the scope

of manipulation under the amendment and successive procedures for different

quotas. Section 6 concludes.
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2 Sequential Binary Voting Games

Let there be a finite set of alternatives X with #X ≥ 2.5 A binary voting tree

on X is a tree in which every non-terminal node has exactly two successors, left

and right, and to every terminal node an alternative in X is assigned, so that

this mapping is onto.6 Formally, we define a binary voting tree on X to be a

quadruple (X,N,B, φ), such that the following conditions are satisfied.

1. N is a finite set of nodes,

2. B is a binary relation on N which satisfies the following conditions.

(i) there exists a unique ν0 ∈ N (the initial node) such that

{ν | ν ∈ N and ν0 B ν} = ∅,

(ii) for all ν ∈ N \ {ν0}, there exists a unique ν ′ ∈ N with ν B ν ′,

(iii) there exists a nonempty subset T ⊂ N of terminal nodes such that for

all ν ∈ T ,

{ν ′ | ν ′ ∈ N and ν ′ B ν} = ∅,

(iv) for all ν ∈ N \ T , {ν ′ | ν ′ B ν} = {l(ν), r(ν)},7

3. φ : T → X is an onto function assigning to each terminal node a unique

alternative in X.

If ν B ν ′ for ν, ν ′ ∈ N , then we call ν a successor of ν ′ and ν ′ a predecessor of ν.

A non-terminal node of a binary voting tree on X is called a decision node.

Let there be n voters. Every voter i has a strict preference ordering Pi over

X, i.e. Pi is complete (for all x, y ∈ X with x 6= y, it is true that xPiy or yPix),

5#A denotes the number of elements in a finite set A.
6For purposes of expediency we define trees directly, rather than starting with tree forms

as introduced in section 1. Thus, at this stage the role of agendas is implicit, and the one

suggested in section 1. It will become more explicit when we introduce the binary voting games

for the amendment and successive procedure below.
7Since every decision node is assumed to have exactly two successors, we follow Austen-

Smith and Banks (2005) and label the successors of every ν ∈ N \ T as l(ν) (left successor),

and r(ν) (right successor).
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transitive (for all x, y, z ∈ X, if xPiy and yPiz, then xPiz) and asymmetric

(for all x, y ∈ X, if xPiy, then ¬yPix). Let P = (P1, . . . ,Pn) be the profile of

voters’ preferences. Then, for every binary voting tree (X,N,B, φ) on X and

any quota q ∈ {1, . . . , n} we can define a sequential binary voting game on X,

(X,N,B, φ,P , q), as follows: at every non-terminal node ν there is a q-majority

vote over the successors l(ν) and r(ν), such that r(ν) wins, if at least q voters

vote in favor of r(ν), and l(ν) wins otherwise. Obviously, unless n is odd and q =

(n+ 1)/2, the outcome of the vote may depend on the labeling of the successors

of a decision node. If r(ν) wins, the next q-majority vote is over the successors

l(r(ν)) and r(r(ν)) of r(ν), while if l(ν) wins, the next q-majority vote is over

the successors l(l(ν)) and r(l(ν)) of l(ν). Voter i’s strategy then is a function

σi : N \ T → N such that σi(ν) ∈ {l(ν), r(ν)} for all ν ∈ N \ T . By following

the winning successors through the tree every strategy profile σ = (σ1, . . . , σn)

determines a unique path from the initial node ν0 to a terminal node ν(σ) ∈ T
which is associated with a unique alternative φ(ν(σ)) ∈ X.

Since the sequential binary voting games defined above can have very implau-

sible Nash equilibria, where all voters coordinate on the same strategy irrespective

of their preferences, we restrict to the class of Nash equilibria in undominated

strategies as it is common in the literature on voting games. Recall that a nor-

mal form game is dominance solvable, if all players are indifferent between all

strategy profiles that survive the iterative procedure where all weakly dominated

strategies of all players are simultaneously eliminated at each stage. An extensive

form game (like the sequential binary voting game defined above) is dominance

solvable, if the corresponding normal form game is dominance solvable.8 We will

now argue that the sequential binary voting game (X,N,B, φ,P , q) is dominance

solvable for all quotas q: first, for every voter i we can eliminate all strategies,

where i does not vote for his preferred terminal node at every last decision node,

i.e. at every decision node whose successors are two terminal nodes. Observe that

given the strict preference ordering Pi, voter i is indifferent between two terminal

nodes ν and ν ′ if and only if φ(ν) = φ(ν ′). Hence, voter i is indifferent between

two terminal nodes if and only if all voters j 6= i are indifferent between these

8In voting theory dominance solvability is also known as “sophisticated voting” (see Far-

quharson, 1969).
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nodes. Thus, conditional on reaching a specific terminal decision node, all strat-

egy profiles surviving the first elimination round are outcome equivalent. Hence,

after the first elimination round every voter has well defined preferences over all

last decision nodes since all these nodes are associated with a unique outcome (al-

ternative) under the surviving strategy profiles. We continue by eliminating for

every voter i all strategies where i does not vote for his preferred successor node at

every penultimate decision node, i.e. at every decision node that is a predecessor

of two last decision nodes. Again, after this second elimination round every voter

has well defined preferences over all penultimate decision nodes and if one voter

is indifferent between two penultimate decision nodes, all voters are indifferent.

Continuing in this way we finally arrive at the initial node and we eliminate for

every voter i all strategies where i does not vote for his preferred successor node.

Then, all voters are indifferent between all remaining strategy profiles and all

these surviving profiles σ lead to the same alternative φ(ν(σ)) ∈ X which we call

the outcome, o(X,N,B, φ,P , q), of the sequential binary voting game. Hence, we

have the following result (cf. McKelvey and Niemi, 1978; Moulin, 1979; Gretlein,

1982; Austen-Smith and Banks, 2005).

Theorem 2.1 Every sequential binary voting game (X,N,B, φ,P , q) is domi-

nance solvable.

In this paper we will focus on two specific binary voting trees on X which

represent two prominent sequential voting procedures: the amendment procedure

and the successive procedure. Both procedures start with an agenda, i.e. an

ordering (x1, x2, . . . , xm) of the alternatives in X, where we assume that m ≥ 2.

Amendment Procedure

Given an agenda (x1, . . . xm), the binary voting tree (X,N,B, φ) for the

amendment procedure is such that the first vote is over x1 and x2, the sec-

ond vote is over the winner of the first vote and x3, the third vote is over the

winner of the second vote and x4, and so on until all alternatives are exhausted.

Figure 1 shows the binary voting tree for the amendment procedure in the case
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Figure 1: Binary voting tree for the amendment procedure with agenda

(x1, x2, x3).

where m = 3. Observe that the agenda also yields a natural labeling of the two

successor nodes of every non-terminal decision nodes: at every decision node ν

there is a vote over two alternatives, xi and xj, where i < j. The left successor,

l(ν), then is the node reached if alternative xi wins, and r(ν) is the node reached

if alternative xj wins.

Consider now the sequential binary voting game (X,N,B, φ,P , q) for the

amendment procedure. By Theorem 2.1 the game is dominance solvable and we

have seen that there is a simple backwards induction procedure to derive the

unique outcome of the game. To determine this outcome, we let P denote the

social preference relation on X under sincere voting with quota q, i.e. for all

x, y ∈ X,

xPy ⇐⇒ #{i |xPiy} ≥ q. (1)

Observe that for given quota q, P is either complete or asymmetric or both. In

the latter case P defines a tournament.9 By allowing P to be incomplete or to

violate asymmetry we depart from the tournament literature and provide a more

general analysis of sequential voting games. Let oA(x1, x2, . . . , xm) denote the

9This is the case if n is odd and q = (n+ 1)/2.
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outcome of the sequential binary voting game for the amendment procedure with

a given agenda (x1, . . . , xm). Then oA(x1, x2, . . . , xm) is inductively defined over

the number of alternatives in the agenda as follows.

1. If m = 2, then

oA(x1, x2) =

{
x1, if ¬x2Px1,

x2, if x2Px1.
(2)

2. Let m ≥ 3 and suppose the outcome has been defined for any agenda with

up to m− 1 alternatives. Consider the agenda (x1, x2, . . . , xm). Then

oA(x1, x2, . . . , xm)

=

{
oA(x1, x3, . . . , xm), if ¬oA(x2, x3, . . . , xm)PoA(x1, x3, . . . , xm),

oA(x2, x3, . . . , xm), if oA(x2, x3, . . . , xm)PoA(x1, x3, . . . , xm).
(3)

Note that in (2) and (3) we use a forward looking tie-breaking rule according

to which the alternative that is introduced later in the agenda proceeds to the

next vote if and only if the final outcome that is reached in this case dominates

the final outcome that is reached if the alternative introduced earlier proceeds to

the next vote.

Successive Procedure

Given an agenda (x1, . . . xm), the binary voting tree (X,N,B, φ) for the suc-

cessive procedure is such that the first vote is over the approval of x1. If x1 is

approved, the voting is over and the outcome is x1. If x1 is rejected, the next vote

is over the approval of x2. If x2 is approved, the voting is over and the outcome

is x2. Otherwise, if x2 is rejected the next vote is over the approval of x3, and so

on. If xm−1 is rejected, the outcome is xm. Figure 2 shows the binary voting tree

for the successive procedure in the case where m = 3. Again, the agenda yields a

natural labeling of the two successor nodes of every non-terminal decision nodes:

at every decision node ν there is a vote over approving or rejecting an alternative

xi. The left successor, l(ν), then is the node reached if xi is approved, and r(ν)

is the node reached if xi is rejected.
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Figure 2: Binary voting tree for the successive procedure with agenda (x1, x2, x3).

As for the amendment procedure we consider the sequential binary voting

game (X,N,B, φ,P , q) for the successive procedure. Again, let P be the social

preference relation on X as defined in (1). Then the outcome oS(x1, x2, . . . , xm)

for the successive procedure is inductively defined over the number of alternatives

in the agenda as follows.

1. If m = 2, then

oS(x1, x2) =

{
x1, if ¬x2Px1,

x2, if x2Px1.
(4)

2. Let m ≥ 3 and suppose the outcome has been defined for any agenda with

up to m− 1 alternatives. Consider the agenda (x1, x2, . . . , xm). Then

oS(x1, x2, . . . , xm) =

{
x1 , if ¬oS(x2, x3, . . . , xm)Px1,

oS(x2, x3, . . . , xm), if oS(x2, x3, . . . , xm)Px1.

(5)

Again note the use of a forward looking tie-breaking rule in (4) and (5).
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The inductive definitions of oA(x1, x2, . . . , xm) and oS(x1, x2, . . . , xm) for the

amendment and successive procedure in equations (2)-(5) reveal that the outcome

of an agenda only depends on the social preference relation P and is invariant

with respect to changes in the individual preferences Pi that leave P unchanged.

Hence, in the following we will consider the general case, where society makes

binary choices according to an arbitrary binary relation P on X, which is not nec-

essarily derived from majority voting with quota q. We refer to P as a dominance

relation and continue to use the term social preference relation if P is derived

from q-majority voting. As long as we assume that society is forward looking

in the sense that at every decision node in the binary voting tree it chooses the

consequence that is preferred according to P , the outcome of an agenda for the

amendment and successive procedures is still given by (2) and (3), respectively

by (4) and (5).

The following two sections will provide characterizations of the outcomes that

an agenda setter can achieve under the amendment and successive procedure for

a given dominance relation P of society.

3 Choosing with the Amendment Procedure

In this section we consider the case where society uses the amendment procedure

for a given agenda in order to choose an alternative from X. Hence, we assume

that society has a dominance relation P on X and that the outcome of an agenda

is determined according to (2) and (3). In order to characterize the set of alter-

natives that can be supported as the outcome for some agenda, we will assume

that P is complete or asymmetric.10 We first derive some auxiliary results. All

proofs are in the appendix.

The first lemma provides a recursive procedure for deriving the outcome of

an agenda if P is complete.11

10These are the cases that arise if P is derived from majority voting with quota q. By bcc
(dce) we denote the largest (smallest) integer less (larger) than or equal to c ∈ R. Then P is

complete if q ≤ dn2 e, and P is asymmetric if q ≥ bn2 c+ 1.
11Shepsle and Weingast (1984) have proved a similar result for the special case of tournaments,

i.e. where P is derived from simple majority voting.
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Lemma 3.1 Let P be complete. Then, oA(x1, . . . , xm) = x̂1, where the auxiliary

alternatives x̂1, . . . , x̂m, are recursively defined as follows.

x̂m = xm,

and for k = m− 1, . . . , 1, x̂k =

{
xk , if ¬x̂lPxk for all l = k + 1, . . . ,m

x̂k+1, otherwise.

Observe that we cannot dispense with the completeness assumption in

Lemma 3.1. To see this, consider the following example.

Example 3.1 Let X = {x1, x2, x3} and consider the incomplete dominance re-

lation P given by x3Px1. Let the agenda be given by (x1, x2, x3). Then, applying

the recursive procedure in Lemma 3.1 we get

x̂3 = x3, x̂2 = x2, x̂1 = x̂2 = x2.

However, x̂1 6= oA(x1, x2, x3) = x3.12,13

In the case where P is complete, from Lemma 3.1 we can derive the following

necessary condition for an alternative to be the outcome of an agenda.

Corollary 3.1 Let P be complete and let x = oA(x1, . . . , xm). Then, for all

y ∈ X with y 6= x, at least one of the following two conditions is satisfied.

(i) ¬yPx.

(ii) There exists z ∈ X with zPy and ¬zPx.

Note that in the special case of a tournament, i.e. when P is complete and

asymmetric, an alternative x belongs to the uncovered set (Miller, 1980) if and

12This is a counterexample to Theorem 3.4 in Banks and Bordes (1988) who claim that the

recursive procedure in Lemma 3.1 applies to an incomplete dominance relation P .
13The following preference profile (P1,P2,P3) for three voters generates P for majority voting

with quota q = 3: x3Pix1Pix2 for i = 1, 2, and x2P3x3P3x1.
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only if condition (i) and/or (ii) in Corollary 3.1 are satisfied for all alternatives y 6=
x. Hence, Corollary 3.1 recovers Miller’s (1980) result that the set of sophisticated

voting outcomes for the amendment procedure is a subset of the uncovered set

in the case of a tournament.

The following two lemmas hold without imposing any assumptions on P .

For a given agenda (x1, . . . , xm) define the auxiliary alternatives x̄1, . . . , x̄m, by

x̄m = xm and

x̄k = oA(xk, xk+1, . . . , xm), for k = 1, . . . ,m− 1. (6)

Lemma 3.2 For all k = 1, . . . ,m− 1,

x̄k = xk ⇐⇒ ¬x̄lPxk for all l = k + 1, . . . ,m.

Lemma 3.3 If xk = oA(x1, . . . , xm) for some k ≤ m− 1, then xk = x̄k.

We are now ready to state our main characterization result that provides a

necessary and sufficient condition for an alternative to be the outcome of some

agenda under the amendment procedure.

Theorem 3.1 Let P be complete or asymmetric. Let x ∈ X and let

Y (x) = {y ∈ X | yPx and ¬xPy}.

Then there exists an agenda (x1, . . . , xm) with x = oA(x1, . . . , xm) if and only if

for all y ∈ Y (x), there is an alternative z(y) ∈ X, such that the following two

conditions are satisfied.

(i) z(y)Py and ¬z(y)Px.

(ii) There exists an ordering (z1, . . . zt) of the alternatives in

Z(x) = {z | z = z(y) for some y ∈ Y (x)},

such that ¬zlPzk for all k = 1, . . . , t− 1, and for all l > k.
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The proof of the theorem is in the Appendix. Let us briefly hint at the

major ideas behind it. Regarding necessity, it is clear that the choice of x is

threatened by the existence of the elements of Y (x), that would eliminate x if

ever really confronted against it. Hence, alternatives that do not beat x but

beat those in Y (x) are needed, and these are the ones in the set Z(x). The

additional conditions on the dominance relation among the alternatives in Z(x)

are also needed to ensure that they can be presented in an appropriate order, so

as to fulfill their role as deterrents of alternatives in Y (x). The sufficiency part

consists in exhibiting a way to order the alternatives that would deliver x as an

outcome, given that the conditions are satisfied. These orders depend on whether

we consider the case of a complete or an asymmetric dominance relation. For the

complete case, if Y (x) is empty, then use any order where x is the last alternative

in the agenda. Otherwise, use the order

(x1, . . . , xm−r−t−1, x, y1, . . . , yr, z1, . . . , zt),

where here the order of the yi’s is any, and the xi’s stand for those alternatives

other than x that do not belong to either Y (x) or to Z(x). Similarly, for the

asymmetric case, if Y (x) is empty use any order where x is the first alternative

in the agenda, and if Y (x) is nonempty, use the order

(x, x1, . . . , xm−r−t−1, y1, . . . , yr, z1, . . . , zt),

where again the order of the yi’s is any, and the xi’s stand for those alternatives

other than x that do not belong to either Y (x) or to Z(x).

For later use we provide the following alternative characterization of the set

of attainable alternatives under the amendment procedure. It is immediate to

see that the following characterization is equivalent to the one in Theorem 3.1.

Theorem 3.2 Let P be complete or asymmetric. Let x ∈ X and let

Y (x) = {y ∈ X | yPx and ¬xPy}.

Then there exists an agenda (x1, . . . , xm) with x = oA(x1, . . . , xm) if and only if

there is a set of alternatives Z(x) with x /∈ Z(x) and ¬zPx for all z ∈ Z(x), such

that the following two conditions are satisfied.
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(i) For all y ∈ Y (x) there exists a z ∈ Z(x) such that zPy.

(ii) There exists an ordering (z1, . . . zt) of the alternatives in Z(x) such that

¬zlPzk for all k = 1, . . . , t− 1, and for all l > k.

Clearly, in many cases one can attain a given alternative through several

orders. Therefore, no uniqueness claim is placed on the orders that we use in

the sufficiency part of the proof. However, it is interesting to realize that, in the

asymmetric case, placing in first place the alternative that one wants to obtain

is always effective, in the following sense.

Corollary 3.2 Let P be asymmetric and let (x1, . . . , xm) be an agenda. If for

some k > 1, xk = oA(x1, . . . , xm), then there exists an agenda (x′1, . . . , x
′
m) with

x′1 = xk and

xk = oA(x′1, . . . , x
′
m).

The following example shows that it is not sufficient to move the outcome of

an agenda one or only a few steps forward. Unless it is moved to the first position

in the agenda, it need not remain the outcome.

Example 3.2 Let X = {x1, x2, x3} and consider the asymmetric and incomplete

dominance relation P given by

x2Px1 and x3Px1.
14

Then x3 = oA(x1, x2, x3) and x3 = oA(x3, x1, x2). However, x2 = oA(x1, x3, x2) =

oA(x2, x3, x1).

If P is asymmetric, then Theorem 3.1 provides an alternative characterization

of the set of possible outcomes to the one given in Banks and Bordes, (1988,

14The following preference profile (P1,P2,P3) for three voters generates P for majority voting

with quota q = 3: x2Pix3Pix1 for i = 1, 2, and x3P3x2P3x1.
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Theorem 3.7).15 To state their result, we need some additional definitions. The

pair (X ′, d) with X ′ ⊆ X is a trajectory if d : X ′ → {1, . . . ,m} is one-to-one

and d(x) > d(y) implies that ¬yPx. A trajectory (X ′, d) is maximal if for all

y ∈ X \X ′ the pair (X ′ ∪ {y}, d′) is not a trajectory, where d′(x) = d(x) for all

x ∈ X ′ and d(y) = #X ′ + 1.

Corollary 3.3 (Banks and Bordes, 1988) If P is asymmetric, then x =

oA(x1, . . . , xm) for some agenda (x1, . . . , xm) if and only if there exists a max-

imal trajectory (X ′, d) with d(x) = t, where t = #X ′.

4 Choosing with the Successive Procedure

We now turn to the case where society uses the successive procedure for a given

agenda in order to choose an alternative from X. Hence, we assume that society

has a dominance relation P onX and that the outcome of an agenda is determined

according to (4) and (5). Again we first derive some auxiliary results before

presenting the characterization of the set of alternatives that can be achieved as

the outcome for some agenda. To this end, we define the auxiliary alternatives

x̄k by

x̄k = oS(xk, xk+1, . . . , xm) for k = 1, . . . ,m− 1.

The first lemma shows that an alternative which was eliminated at some stage

will never return.

Lemma 4.1 Let (x1, . . . , xm) be an agenda. If x̄k 6= xs for some s ≥ k, then

x̄l 6= xs for all l < k.

Lemma 4.1 immediately implies the following result.

15Observe, however, that the proof of Theorem 3.7 in Banks and Bordes (1988) is incor-

rect whenever P is not complete, since it relies on the recursive procedure in Lemma 3.1. In

Example 3.1 we showed that this procedure does not yield the outcome of an agenda if P is

not complete.
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Lemma 4.2 xk = oS(x1, . . . , xm) for some 1 ≤ k ≤ m if and only if x̄l = xk for

all l ≤ k.

We are now ready to present our main characterization result for the successive

procedure.

Theorem 4.1 Let P be complete or asymmetric. Let x ∈ X and let

Y (x) = {y ∈ X | yPx and ¬xPy}.

Then there exists an agenda (x1, . . . , xm) with x = oS(x1, . . . , xm) if and only

if there is a set of alternatives Z(x) with x /∈ Z(x) such that the following two

conditions are satisfied.

(i) For all y ∈ Y (x) there exists a z ∈ Z(x) such that zPy, if P is complete,

and such that ¬yPz, if P is asymmetric.

(ii) There exists an ordering (z1, . . . , zt) of the alternatives in Z(x) such that

¬zl+1Pzl for all l = 1 . . . , t− 1, and ¬z1Px.

Again let us briefly dwell on the major ideas of the proof which is in the

Appendix. For necessity, any alternative in Y (x) which threatens x must be

eliminated before it meets x. This is achieved by the alternatives in Z(x) which

may in turn threaten x, but which can be placed in such an order that the

alternative which actually meets x does not eliminate x. For sufficiency, we must

find an order of the alternatives which delivers x as an outcome, given that the

conditions are satisfied. This order again depends on whether we consider the

case of a complete or an asymmetric dominance relation. For the complete case,

if Y (x) is empty, then use any order where x is the last alternative in the agenda.

Otherwise, use the order

(x1, . . . , xm−r−1, x, w1, . . . , wr).

Here, the xi’s are all alternatives other than x that do not belong to either Y (x)

or to Z(x), and the wi’s are alternatives that belong either to Y (x) or to Z(x),
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and their order has to be selected in a delicate manner that is explained along

the inductive proof. Similarly, for the asymmetric case, if Y (x) is empty use any

order where x is the first alternative in the agenda, and if Y (x) is nonempty, use

the order

(x, x1, . . . , xm−r−1, w1, . . . , wr),

where again the xi’s are all alternatives other than x that do not belong to either

Y (x) or to Z(x) and the wi’s are alternatives that belong either to Y (x) or to

Z(x) and that are ordered in a specific manner.

Like for the amendment procedure, if P is asymmetric and an alternative x

can be obtained as the outcome for some agenda, then x is the outcome of an

agenda where x is placed first.

Corollary 4.1 Let P be asymmetric and let (x1, . . . , xm) be an agenda. If for

some k > 1, xk = oS(x1, . . . , xm), then there exists an agenda (x′1, . . . , x
′
m) with

x′1 = xk and

xk = oS(x′1, . . . , x
′
m).

We omit the proof of this corollary as it is similar to the proof of Corollary 3.2.

For the special case where P is a tournament, i.e. complete and asymmetric,

Theorem 4.1 recovers the well-known result that the set of attainable outcomes

under the successive procedure coincides with the top cycle (Miller, 1977). This

result can be generalized to any asymmetric dominance relation P . In order to

define the top cycle for an asymmetric dominance relation P , let R be the binary

relation on X given by xRy if and only if ¬yPx for x, y ∈ X. Observe that

R is complete since P is asymmetric. The top cycle of P then is the set of all

alternatives x such that for all y 6= x, there exists a sequence of alternatives

z0, z1, . . . , zs, with z0 = x, zs = y, and zlRzl+1 for all l = 1, . . . , s − 1. We then

have the following corollary to Theorem 4.1.
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Corollary 4.2 If P is asymmetric, then x = oS(x1, . . . , xm) for some agenda

(x1, . . . , xm) if and only if x is in the top cycle of P .

5 On the Forms and Extent of Agenda Manip-

ulation

In this section we focus on the possibilities that an agenda setter may find to use

her power to determine the order of vote in her own favor, in order to get a most

preferred alternative. In its most demanding version, non-manipulability would

require that whoever is chosen as an agenda setter could not change the outcome

at all, because it is the same regardless of the order of vote.

Definition 5.1 A sequential voting procedure is non-manipulable by any agenda

setter at a given dominance relation P if it yields the same outcome regardless of

the agenda.

Note that the definition applies to any potential agenda setter.

It turns out that both the amendment and successive procedure are non-

manipulable whenever there exists a (generalized) Condorcet winner, i.e. an al-

ternative that dominates all others and in turn is not dominated. Hence, both

procedures are non-manipulable on the same set of preference profiles. In order

to state this result, for any dominance relation P we let OA(P ) (OS(P )) denote

the set of alternatives that are outcomes for some agenda under the amendment

(successive) procedure given P .

Theorem 5.1 Let P be complete or asymmetric and let x ∈ X. Then the fol-

lowing statements are equivalent.

(i) OS(P ) = {x}.

(ii) OA(P ) = {x}.

(iii) For all y 6= x it is true that xPy and ¬yPx.
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For those profiles where several outcomes could be reached, depending on the

order of vote, it is possible to compare the choice flexibility that an agenda setter

may obtain from alternative rules, as expressed by the following definition.

Definition 5.2 Given two sequential voting procedures, we say that one is more

agenda manipulable than the other if, for any complete or asymmetric dom-

inance relation P , the set of alternatives that are attainable by agenda manipu-

lation under the latter is a subset of the former, and it is a strict subset for at

least one dominance relation P .

We can now state our first result on agenda manipulation.

Proposition 5.1 The successive procedure is more agenda manipulable than the

amendment procedure.

The claim that OA(P ) ⊆ OS(P ) for all preference relations P is an imme-

diate implication of Theorem 3.2 and Theorem 4.1. To get an intuition for this

result observe that the amendment procedure imposes stronger conditions on an

alternative for it to survive the sequential voting procedure than the successive

procedure. In order to obtain x as the outcome of an agenda for the succes-

sive procedure it is sufficient that x is not dominated by the outcome of some

agenda for the remaining alternatives. Hence, it is sufficient to find some ordering

(x1, . . . , xm−1) of the alternatives different from x, such that ¬oS(x1, . . . , xm−1)Px

(see (4) and (5)). By contrast, in order for x to be the outcome of the agenda

(x, x1, . . . , xm−1) under the amendment procedure, x must be the outcome of any

agenda (x, xk, . . . , xm−1) for k = 1, . . . ,m− 1 (see (2) and (3)).

Observe that Proposition 5.1 generalizes a known result for tournaments to

arbitrary preference relations or arbitrary quotas, respectively.16

To verify that there exist relations P with OA(P )  OS(P ) consider the

following example.

16For tournaments, the result follows from the fact that the Banks set is a subset of the top

cycle.

21



Example 5.1 Let X = {x, y, w, z} and let P be given by

xPw, yPx, yPw,wPz, zPx and zPy.17

Then x = oS(x,w, z, y), but x /∈ OA(P ). In fact, only y, w, and z satisfy condi-

tions (i) and (ii) in Theorem 3.1.

In what follows we analyse the role of the quota in determining the degree

of manipulability of our rules for the special case where the social relation P is

derived from a vote under a given quota. It turns out that the set of preference

profiles at which the amendment and successive procedures are non-manipulable

is maximized at simple majority voting. To state this result, we denote by Φ(q)

the set of profiles P such that there exists a generalized Condorcet winner under

majority voting with quota q, i.e. Φ(q) is the set of profiles at which the amend-

ment and the successive procedures are non-manipulable given q (cf. Theorem

5.1).

Proposition 5.2 Let 1 ≤ q < q′ ≤ bn
2
c+ 1 or bn

2
c+ 1 ≤ q′ < q ≤ n. Then

Φ(q) ⊆ Φ(q′).

In particular, Φ(q) is maximal for q = bn
2
c+ 1, i.e. for simple majority voting.

We now fix a preference profile and compare the degree of manipulability

across different quotas. Let OA(P , q) (OS(P , q)) denote the set of alternatives

that are outcomes under majority voting with quota q at profile P for some

agenda under the amendment (successive) procedure.

We first consider the amendment procedure. The following example shows

that the sets OA(P , q) are not nested in general.

17The following preference profile (P1,P2,P3) for three voters generates P for simple majority

voting: yP1xP1wP1z, wP2zP2yP2x, zP3yP3xP3w.
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Example 5.2 Let X = {x, y, z} and let there be five voters with the following

preferences.

zPiyPix for i = 1, 2,

yPixPiz for i = 3, 4,

xP5zP5y

Using Theorem 3.1 it is straightforward to verify that

OA(P , 1) = OA(P , 3) = OA(P , 5) = {x, y, z} and OA(P , 2) = OA(P , 4) = {y, z}.

While there is no quota which minimizes the degree of manipulability for the

amendment procedure, unanimity turns out to be the one that maximizes it.

Proposition 5.3 For every preference profile P and for all q = 1, . . . , n − 1, it

is true that

OA(P , q) ⊆ OA(P , n).

The situation is somewhat different for the successive procedure. There, the

sets OS(P , q) are nested for supermajority and simple majority quotas. Hence,

simple majority is a manipulation minimizer among all supermajority and simple

majority quotas. However, nestedness does not hold for submajority quotas. We

summarize these results in the following proposition.

Proposition 5.4 Let P be an arbitrary preference profile. Then the following is

true.

1. For all q, q′, with bn
2
c+ 1 ≤ q < q′ ≤ n it is true that OS(P , q) ⊆ OS(P , q′).

2. For q, q′, with 1 ≤ q < q′ ≤ bn
2
c+ 1 the sets OS(P , q) and OS(P , q′) are not

necessarily nested, i.e. there exist a set of alternatives X and a preference

profile P such that neither OS(P , q) ⊆ OS(P , q′) holds for all q, q′, with

1 ≤ q < q′ ≤ bn
2
c + 1, nor OS(P , q′) ⊆ OS(P , q) holds for all q, q′, with

1 ≤ q < q′ ≤ bn
2
c+ 1.
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The first claim in Proposition 5.4 is proved in the appendix. To prove the second

claim, observe that for the preferences in Example 5.2 we obtain

OS(P , 1) = OS(P , 3) = OS(P , 4) = OS(P , 5) = {x, y, z}

and

OS(P , 2) = {y, z}.

The preference profile in Example 5.2 also demonstrates that it is not true that

simple majority voting always minimizes the degree of manipulability, neither

for the amendment nor for the successive procedure. In particular and quite

surprisingly, in this example the submajority quota q = 2 minimizes the power

of the agenda setter for both procedures.

One source of the difference in the set of attainable outcomes under the amend-

ment and successive procedure is that the former always selects an outcome in

the Pareto set while the latter may also have inefficient outcomes as we will show

below. However, this is not the only reason why OA(P , q) and OS(P , q) differ, as

shown by Example 5.2.18 The following proposition summarizes the relation of

the Pareto set with the attainable set for the amendment procedure.

Proposition 5.5

1. No Pareto dominated alternative is attainable under the amendment proce-

dure for any q = 1, . . . , n, i.e.

OA(P , q) ⊆ {x | there exists no y with yPix for all i}.

2. For q ∈ {1, n} the set of outcomes OA(P , q) coincides with the set of alter-

natives which are not Pareto dominated by any other, i.e.

OA(P , 1) = OA(P , n) = {x | there exists no y with yPix for all i}.
18In this example, x ∈ OS(P, 4) and x /∈ OA(P, 4), but x is not Pareto dominated.
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Next we consider the successive procedure. Again, OS(P , 1) is the set of

alternatives that are not Pareto dominated by any other alternative. However,

different from the amendment procedure, for the successive procedure and q > 1

an alternative can be the outcome for some agenda even if it is Pareto dominated.

In particular, it is not true in general that OS(P , 1) = OS(P , n).

Proposition 5.6

1. OS(P , 1) = {x | there exists no y with yPix for all i}.

2. Let n ≥ 3 and let 2 ≤ q ≤ n. Then there exist a set of alternatives X and

voters’ preferences P such that x ∈ OS(P , q) for some Pareto dominated

alternative x ∈ X.

The first claim in Proposition 5.6 is proved in the appendix. The second claim is

proved by the following example.

Example 5.3 Let n ≥ 3 and 2 ≤ q ≤ n. Let X = {x, y, w, z} and let there be n

voters with the following preferences:

zP1wP1yP1x,

wPiyPixPiz for all i = 2, . . . , q,

If q < n, let

yPixPizPiw, for all i = q + 1, . . . , n.

Then x is Pareto dominated by y and x = oS(x, z, y, w) for majority voting with

quota q, i.e. x ∈ OS(P , q).
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6 Conclusion

It is well known that sequential voting procedures are prone to agenda manipula-

tion except for very special cases, where there is a unique alternative which is the

outcome under every agenda at a given profile of voters’ preferences. Neverthe-

less, to the best of our knowledge our paper is the first to provide a comprehensive

analysis of whether and how the voting procedures derived from the amendment

and successive procedure with different majority quotas differ with respect to the

scope of manipulation they permit.

Our analysis builds upon a characterization of the attainable sets for the

amendment and successive procedure for arbitrary majority quotas. Using this

characterization we can show that a well-known result for tournaments extends

to arbitrary majority quotas, namely that the successive procedure is uniformly

more vulnerable towards agenda manipulation than the amendment procedure.

This gives support to using the amendment rather than the successive proce-

dure if the possibility of agenda manipulation is a concern in a committee or,

more general, in any democratic institution. We have also shown that the set of

preference profiles for which neither procedure is manipulable is maximal under

simple majority voting. However, when manipulation is possible, the connection

between the degree of manipulability and the choice of a quota is a complex one.

In particular, simple majority need no longer be the quota that minimizes the

size of choices available to the agenda setter.
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Appendix

Proof of Lemma 3.1: The proof is by induction over m. For m = 2 the

claim is obvious. Hence, let m ≥ 3 and assume that the claim is true for any

agenda with up to m− 1 alternatives. Consider an agenda with m alternatives,

(x1, x2, . . . , xm). Denote by ŷi, i = 1, 3, 4, . . . ,m, the auxiliary alternatives when

applying the recursive procedure to the agenda (x1, x3, x4, . . . , xm), and denote by

ẑi, i = 2, 3, . . . ,m, the auxiliary alternatives when applying the recursive proce-

dure to the agenda (x2, x3, . . . , xm). Then, by assumption oA(x1, x3, x4, . . . , xm) =

ŷ1 and oA(x2, x3, . . . , xm) = ẑ2. Moreover, let x̂i be the auxiliary alternatives when

applying the recursive procedure to the agenda (x1, . . . , xm). We have to show

that x̂1 = oA(x1, . . . , xm).

First observe that x̂k = ŷk = ẑk for k = 3, . . . ,m, and that x̂2 = ẑ2. Consider

the following cases:

Case 1: ŷ1 = ŷ3. In this case, there exists k ≥ 3 with ŷkPx1, i.e. with x̂kPx1 and

hence x̂1 = x̂2. If ẑ2P ŷ1, then by (3) oA(x1, . . . , xm) = ẑ2 = x̂2 = x̂1. If ¬ẑ2P ŷ1,

then by (3) oA(x1, . . . , xm) = ŷ1 = ŷ3 = x̂3. Since ẑ2 = x̂2 and ŷ1 = ŷ3 = x̂3,

¬ẑ2P ŷ1 means ¬x̂2Px̂3, from which it follows that x̂3Px̂2, if x̂2 6= x̂3 since P is

complete. However, x̂2 6= x̂3 implies x̂2 = x2 which is impossible if x̂3Px2. Hence,

x̂3 = x̂2 = x̂1 which proves the claim for this case.

Case 2: ŷ1 = x1. In this case, for all k ≥ 3,¬x̂kPx1. If ẑ2P ŷ1, then by (3)

oA(x1, . . . , xm) = ẑ2 = x̂2. Since ẑ2 = x̂2 and ŷ1 = x1, ẑ2P ŷ1 is equivalent to

x̂2Px1 from which it follows that x̂1 = x̂2 = oA(x1, . . . , xm). If ¬ẑ2P ŷ1, then by

(3) oA(x1, . . . , xm) = ŷ1 = x1. Since ẑ2 = x̂2 and ŷ1 = x1, ¬ẑ2P ŷ1 is equivalent

to ¬x̂2Px1 from which it follows that x̂1 = x1 = oA(x1, . . . , xm) which proves the

claim for this case.

�

Proof of Corollary 3.1: Let oA(x1, . . . , xm) = xk. Consider xl with l > k. If

x̂l = xl, then by Lemma 3.1 ¬xlPxk and (i) holds. If x̂l = x̂l+1, then again by

by Lemma 3.1 there exists l′ > l with xl′Pxl and ¬xl′Pxk, and hence (ii) holds.

Consider xl with l < k. Since xk = oA(x1, . . . , xm), by Lemma 3.1 there exists

l′ > l with xl′Pxl and ¬xl′Pxk. Therefore, also in this case (ii) holds.

�
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Proof of Lemma 3.2: The proof is by induction over m. For m = 2 the

claim immediately follows from (2). So assume that the claim has been proved

for all agendas with at most m − 1 alternatives and consider an agenda with m

alternatives, (x1, . . . , xm). By assumption, the claim holds for all k = 2, . . . ,m,

and it remains to consider k = 1.

To prove necessity assume that x̄1 = x1. By (3), x̄1 = x1 implies that x1 =

oA(x1, x3, . . . , xm). Since there arem−1 alternatives in the agenda (x1, x3, . . . , xm),

it follows that ¬x̄kPx1 for all k = 3, . . . ,m (observe that the auxiliary vari-

ables for agenda (x1, x3, . . . , xm) defined in (6) are identical to those for agenda

(x1, . . . , xm) whenever k ≥ 3). Moreover, by (3), oA(x1, . . . , xm) =

oA(x1, x3, . . . , xm) = x1 if and only if ¬oA(x2, . . . , xm)Px1, where the latter is

equivalent to ¬x̄2Px1.

For sufficiency assume that ¬x̄lPx1 for all l = 2, . . . ,m. Then, by (3),

oA(x1, . . . , xm) 6= x1 implies that either x1 6= oA(x1, x3 . . . , xm) or x1 =

oA(x1, x3 . . . , xm) and oA(x2, . . . , xm)PoA(x1, x3 . . . , xm) which holds if and only

if x̄2Px1. The latter case immediately leads to a contradiction since we have as-

sumed that ¬x̄2Px1. It remains to consider the case where x1 6= oA(x1, x3 . . . , xm).

Because the agenda (x1, x3 . . . , xm) has m − 1 alternatives we conclude that

there must exist a k ≥ 3 with x̄kPx1 which contradicts our assumption that

¬x̄lPx1 for all l = 2, . . . ,m. This proves the claim.

�

Proof of Lemma 3.3: The proof is by induction over m. For m = 2 we only

have to consider the case k = 1, where nothing has to be proved. Hence, assume

that the claim is true for any agenda with up to m ≥ 2 alternatives and consider

an agenda with m + 1 alternatives. Let xk = oA(x1, . . . , xm+1) for some k ≤ m.

If k = 1, nothing has to be proved. If k ≥ 2, then by definition of the outcome

of an agenda

xk ∈ {oA(x1, x3, . . . , xm+1), oA(x2, . . . , xm+1)}.

Since both agendas, (x1, x3, . . . , xm+1) and (x2, . . . , xm+1) have m alternatives

and k ≥ 2, it follows in either case that xk = oA(xk, . . . , xm+1).

�
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Proof of Theorem 3.1: We have to consider the cases, where P is complete

and where P is asymmetric.

Case 1: P is complete.

Necessity: Let (x1, . . . , xm) be an agenda with oA(x1, . . . , xm) = x. Nothing has

to be proved if Y (x) = ∅. Hence, let Y (x) 6= ∅ and let y ∈ Y (x). For any

alternative w we denote by ŵ the corresponding auxiliary alternative defined in

the recursive procedure in Lemma 3.1. If ŷ = y, then x cannot be the outcome of

any agenda: If y is a successor of x, then yPx implies that x̂ 6= x and hence x is

not the outcome of the agenda. If y is a predecessor of x, then ŷ = y immediately

implies that the outcome is different from x. Hence, ŷ 6= y which implies that

there exists an alternative z(y) with ẑ(y) = z(y) and z(y)Py. If x is the outcome

of the agenda, then from ẑ(y) = z(y) it follows that ¬z(y)Px. This proves (i).

Let Z(x) = {z | z = z(y) for some y ∈ Y (x)} and let (z1, . . . , zt) be the ordering

of the alternatives in Z(x) in the agenda of which x is the outcome. Since we

have shown that ẑk = zk for all k = 1, . . . , t, we conclude that (ii) must hold.

Sufficiency: The proof is by construction. Let x be an alternative such that for

all y ∈ Y (x) there exists an alternative z(y) ∈ X such that conditions (i) and (ii)

are satisfied. If Y (x) = ∅, then by completeness of P , xPy for all alternatives

y 6= x and hence x is the outcome of any agenda (x1, . . . , xm) with xm = x.

If Y (x) 6= ∅, let (z1, . . . , zt) be the ordering of the alternatives in Z(x) with

the property as given in (ii). Observe that zk 6= x for all k = 1, . . . , t, since

yPx and ¬xPy for all y ∈ Y (x). Take an arbitrary order (y1, . . . , yr) of the

alternatives in Y (x). If r + t + 1 < m, let (x1, . . . , xm−r−t−1) be an arbitrary

order of the set of alternatives in X \ (Y (x) ∪ Z(x) ∪ {x}) 6= ∅. Consider the

agenda (x1, . . . , xm−r−t−1, x, y1, . . . , yr, z1, . . . , zt) (if r + t+ 1 = m, the agenda is

(x, y1, . . . , yr, z1, . . . , zt)). We will now verify that

x = oA(x1, . . . , xm−r−t−1, x, y1, . . . , yr, z1, . . . , zt).

We use the recursive procedure in Lemma 3.1. By construction, ẑl = zl for all

l = 1, . . . , t, and ŷl = z1 for all l = 1, . . . , r, since for all l = 1, . . . , r, there exists

k ∈ {1, . . . , t} such that ẑkPyl. Since ¬ẑlPx for all l = 1, . . . , t, it follows that
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x̂ = x. None of the xk, k = 1, . . . ,m−r−t−1, is in Y (x). Hence, by completeness

of P , xPxk for all k = 1, . . . ,m − r − t − 1. This implies that x̂1 = x̂ = x and

hence x = oA(x1, . . . , xm−r−t−1, x, y1, . . . , yr, z1, . . . , zt).

Case 2: P is asymmetric.

Necessity: Let xk = oA(x1, . . . , xm) for some k ∈ {1, . . . ,m}. If k < m, then,

from Lemma 3.3 it follows that x̄k = xk and then Lemma 3.2 implies that ¬x̄lPxk
for all l > k. We will now show that for all l < k, xk = x̄l or ¬x̄lPxk. Suppose

by way of contradiction that there exists l < k with xk 6= x̄l and x̄lPxk. We will

prove that this implies, that x̄s 6= xk for all s = 1, . . . , l− 1, where the case s = 1

yields a contradiction to the assumption that xk = x̄1 = oA(x1, . . . , xm):

The proof is by backwards induction over s: Let s = l − 1 and suppose by

way of contradiction that x̄l−1 = xk. Since

x̄l−1 ∈ {oA(xl−1, xl+1, . . . , xm), x̄l}

this implies xk = x̄l−1 = oA(xl−1, xl+1, . . . , xm) and ¬x̄lPxk which is a contra-

diction. Hence, x̄l−1 6= xk. Assume we have shown that x̄s 6= xk for all s with

t ≤ s ≤ l − 1, where 2 ≤ t ≤ l − 1. Suppose by way of contradiction that

x̄t−1 = xk. Since

x̄t−1 ∈ {oA(xt−1, xt+1, . . . , xm), x̄t}

this implies xk = x̄t−1 = oA(xt−1, xt+1, . . . , xm). Since

oA(xt−1, xt+1, . . . , xm) ∈ {oA(xt−1, xt+2, . . . , xm), x̄t+1}

and x̄t+1 6= xk it follows that xk = oA(xt−1, xt+2, . . . , xm). Continuing in this

manner we conclude that

xk ∈ {oA(xt−1, xl+1, . . . , xm), x̄l}

and hence xk = oA(xt−1, xl+1, . . . , xm) which is impossible given that x̄lPxk.

Summarizing, we have shown that for all l 6= k, xk = x̄l or ¬x̄lPxk. Returning

to the proof of necessity we first note that nothing has to be proved if Y (xk) = ∅.
Hence, let Y (xk) 6= ∅ and let xl ∈ Y (xk), i.e. xlPxk and ¬xkPxl. Then by our

previous argument x̄l 6= xl. Hence, from Lemma 3.2 it follows that there exists
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l′ > l with x̄l′Pxl. By what we have shown above ¬x̄l′Pxk. Moreover, either

xl′ = x̄l′ and ¬xl′Pxk or there exists l′′ > l′ with x̄l′′ = xl′′ = x̄l′ . Also in this

case ¬xl′′Pxk. This proves that for all y ∈ Y (xk) there exists z(y) ∈ X with

z(y) = z(y), z(y)Py and ¬z(y)Pxk, i.e. in particular (i) holds. Let Z(xk) =

{z | z = z(y) for some y ∈ Y (xk)} and let (z1, . . . , zt) be the ordering of the

alternatives in Z(xk) in the agenda of which xk is the outcome. Since we have

shown that z̄s = zs for all s = 1, . . . , t, we conclude that (ii) must hold.

Sufficiency: The proof is again by construction. Let x be an alternative such

that for all y ∈ Y (x) there exists an alternative z(y) ∈ X such that conditions

(i) and (ii) are satisfied. If Y (x) = ∅, then from Lemma 3.2 it follows that

x is the outcome of any agenda (x1, . . . , xm) with x1 = x. If Y (x) 6= ∅, let

(y1, . . . , yr) be an arbitrary ordering of the alternatives in Y (x). Moreover, let

(z1, . . . , zt) be the ordering of the alternatives in Z(x) with the property as given

in (ii). As in case 1 observe that zk 6= x for all k = 1, . . . , t, since yPx and

¬xPy for all y ∈ Y (x). If r + t + 1 < m, let (x1, . . . , xm−r−t−1) be an arbitrary

ordering of the set of alternatives in X \ (Y (x) ∪ Z(x) ∪ {x}). Consider the

agenda (x, x1, . . . , xm−r−t−1, y1, . . . , yr, z1, . . . , zt) (if r + t+ 1 = m, the agenda is

(x, y1, . . . , yr, z1, . . . , zt)). We will now verify that

x = oA(x, x1, . . . , xm−r−t−1, y1, . . . , yr, z1, . . . , zt).

By Lemma 3.2 it is sufficient to show that

1. ¬oA(zk, . . . , zt)Px for all k = 1, . . . , t.

2. ¬oA(yk, . . . , yr, z1, . . . , zt)Px for all k = 1, . . . , r,

3. ¬oA(xk, . . . , xm−r−t−1, y1, . . . , yr, z1, . . . , zt)Px for all k = 1, . . . ,m−r−t−1,

1. follows from the fact that oA(zk, . . . , zt) = zk and ¬zkPx for all k = 1, . . . , t.

2. will follow from the fact that oA(yk, . . . , yr, z1, . . . , zt) ∈ {z1, . . . , zt} for all

k = 1, . . . , r, and ¬zsPx for all s = 1, . . . , t. We prove the former by showing

that

oA(y′1, . . . , y
′
l, z1, . . . , zt) ∈ {z1, . . . , zt} (7)

for any agenda with y′1, . . . , y
′
l ∈ Y (x) and l = 1, . . . , r. The proof is by induction

over l. Let l = 1. Then oA(y′1, z1, . . . , zt) ∈ {z1, . . . , zt} because otherwise, by
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Lemma 3.2, ¬zkPy′1 for all k = 1, . . . , t, contradicting the definition of the set

Z(x). Suppose (7) has been shown for all subsets of Y (x) with at most l ≥ 1

alternatives, where l ≤ r − 1. Consider now the agenda (y′1, . . . , y
′
l+1, z1, . . . , zt)

with l + 1 alternatives from Y (x). By definition of the outcome of an agenda,

oA(y′1, . . . , y
′
l+1, z1, . . . , zt)

∈ {oA(y′1, y
′
3, . . . , y

′
l+1, z1, . . . , zt), o

A(y′2, . . . , y
′
l+1, z1, . . . , zt)}.

Since there are l alternatives from Y (x) in the agendas (y′1, y
′
3, . . . , y

′
l+1, z1, . . . , zt)

and (y′2, . . . , y
′
l+1, z1, . . . , zt) it follows that the outcome of these agendas is an

alternative in Z(x) and hence also oA(y′1, . . . , y
′
l+1, z1, . . . , zt) ∈ {z1, . . . , zt}. This

proves 2.

To prove 3. suppose by way of contradiction that

oA(xk, . . . , xm−r−t−1, y1, . . . , yr, z1, . . . , zt)Px

for some k ∈ {1, . . . ,m− r − t− 1}. This implies

oA(xk, . . . , xm−r−t−1, y1, . . . , yr, z1, . . . , zt) ∈ {y1, . . . , yr}.

Using Lemma 3.3 we conclude that there exists k ∈ {1, . . . , r} such that yk =

oA(yk, . . . , yr, z1, . . . zt). However, this contradicts (7) and hence 3. holds as

claimed.

�

Proof of Corollary 3.2: Let xk = oA(x1, . . . , xm) and let Y (xk) = {y ∈
X | yPxk}.19 Then by Theorem 3.1 for all y ∈ Y (xk), there exists an alterna-

tive z(y) ∈ X, such that z(y)Py and ¬z(y)Pxk, and there exists an ordering

(z1, . . . zt) of the alternatives in Z(xk) = {z | z = z(y) for some y ∈ Y (xk)}, such

that ¬zlPzs for all s = 1, . . . , t − 1, and for all l > s. Given the latter condi-

tion is satisfied, the proof of Theorem 3.1 has shown that there exists an agenda

(x′1, . . . , x
′
m) with x′1 = xk and xk = oA(x′1, . . . , x

′
m). �

Proof of Corollary 3.3: Let P be asymmetric and let x be an alternative such

that there exists a maximal trajectory (X ′, d) with d(x) = t, where t = #X ′. Let

19Observe that yPxk implies ¬xkPy since P is asymmetric.
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zl = d−1(l) for l = 1, . . . , t− 1. Since (X ′, d) is a trajectory, it follows that

¬zlPx for all l = 1, . . . , t− 1, (8)

and

¬zkPzl for all k = 1, . . . , t− 2, and for all t− 1 ≥ l > k. (9)

Consider the set

Y (x) = {y | yPx}.20

If Y (x) = ∅, then by Theorem 3.1 x = oA(x1, . . . , xm) for some agenda. If

Y (x) 6= ∅, then for all y ∈ Y (x), zlPy for some l ∈ {1, . . . , t − 1} since (X ′, d)

is a maximal trajectory. Since ¬zlPx by (8), z(y) := zl fulfills condition (i)

in Theorem 3.1. Moreover, if we let Z(x) = {z1, . . . , zt−1}, then by (9) con-

dition (ii) in Theorem 3.1 is satisfied for the ordering (z1, . . . , zt−1). Hence,

x = oA(x1, . . . , xm). This proves the first part of the claim.

Let x = oA(x1, . . . , xm) for some agenda (x1, . . . , xm). If Y (x) = {y | yPx} =

∅, then let (X ′, d) be a maximal trajectory on the set X \ {x}. Then (X ′ ∪
{x}, d′) with d′(x′) = d(x′) for all x′ ∈ X ′ and d′(x) = #X ′ + 1 is a maximal

trajectory. If Y (x) 6= ∅, let (z1, . . . , zt) satisfy condition (ii) in Theorem 3.1.

Then ({z1, . . . , zt, x}, d) with d(zl) = t − l + 1 for l = 1, . . . , t, and d(x) = t + 1

is a trajectory. If for all y /∈ {z1, . . . , zt, x} with ¬yPx it holds that xPy or zlPy

for some l ∈ {1, . . . , t}, then ({z1, . . . , zt, x}, d) is a maximal trajectory and we

are done. If, instead ¬xPy and ¬zlPy for all l ∈ {1, . . . , t}, then consider the

trajectory ({z1, . . . , zt, y, x}, d′) with d′(zl) = t − l + 1 for l = 1, . . . , t, d′(y) =

t + 1 and d′(x) = t + 2. If for all y′ /∈ {z1, . . . , zt, y, x} with ¬y′Px it holds

that xPy′ or yPy′ or zlPy
′ for some l ∈ {1, . . . , t}, then ({z1, . . . , zt, y, x}, d′) is

a maximal trajectory and we are done. If, instead ¬xPy′, ¬yPy′ and ¬zlPy′

for all l ∈ {1, . . . , t}, then consider the trajectory ({z1, . . . , zt, y, y
′, x}, d′′) with

d′′(zl) = t− l+1 for l = 1, . . . , t, d′′(y) = t+1, d′′(y′) = t+2 and d′′(x) = t+3. As

before, either ({z1, . . . , zt, y, y
′, x}, d′′) is a maximal trajectory and we are done

or we can add another alternative in the same manner as above. In any case,

after a finite number of steps we end up with a maximal trajectory that has x as

the last alternative. This proves the claim.

�
20Observe that yPx implies ¬xPy since P is asymmetric.
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Proof of Lemma 4.1: Let (x1, . . . , xm) be an agenda with x̄k 6= xs for some

s ≥ k. The proof is by backwards induction over l < k. Let l = k − 1. Then

by definition x̄k−1 ∈ {xk−1, x̄k} and since x̄k 6= xs by assumption, it follows that

x̄k−1 6= xs. Suppose the claim has been proven for all l with t ≤ l < k, where

2 ≤ t ≤ k − 1. Since by definition x̄l−1 ∈ {xl−1, x̄l} and since x̄l 6= xs by

assumption, it follows that x̄l−1 6= xs.

�

Proof of Lemma 4.2: Let xk = oS(x1, . . . , xm) for some 1 ≤ k ≤ m, and

suppose by way of contradiction that x̄l 6= xk for some l ≤ k. By Lemma 4.1 this

implies that x̄s 6= xk for all s < l contradicting the fact that xk = x̄1.

Let 1 ≤ k ≤ m and let x̄l = xk for all l ≤ k. In particular, we have

x̄1 = oS(x1, . . . , xm) = xk which proves the claim.

�

Proof of Theorem 4.1:

1. Let P be complete.

Necessity: Let xk = oS(x1, . . . , xm). Nothing has to be proved if Y (xk) = ∅.
Hence, let Y (xk) 6= ∅ and let Y (xk) = {xl(1), . . . , xl(r)}, where l(1) < l(2) <

. . . < l(r). From Lemma 4.2 it follows that k < l(1). We now construct a

sequence (z1, . . . , zt) with the following properties:

• ¬zlPzl+1 for all l = 1, . . . , t− 1.

• ¬ztPxk.

• x 6= zs for all s = 1, . . . , t.

• For all j = 1, . . . , r, there exists an s, 1 ≤ s ≤ t, with zsPxl(j).

Renumbering the alternatives such that z′s = zt−s+1 for s = 1, . . . , t, and

defining Z(xk) = {z′1, . . . , z′t}, this will prove necessity.

Define z1 = oS(xl(r), xl(r)+1, . . . , xm) and

s(1) = min{h | oS(xh, . . . , xm) = z1}.
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Since xk = oS(x1, . . . , xm) it follows that s(1) > k.

Suppose s(1) ≤ l(1). Then z1Pxl(j) for all j = 1, . . . , r − 1. If ¬z1Pxk it

follows that z1 6= xl(r) and hence z1Pxl(r). In this case we are done because

the sequence (z1) has all the properties specified above. If z1Pxk, define

z2 = xs(1)−1. Then, by definition of s(1), ¬z1Pz2 which implies z2Pz1

since P is complete. Moreover, either z1 6= xl(r) and hence z1Pxl(r), or

z1 = xl(r) and z2Pxl(r). If ¬z2Pxk we are done because the sequence (z1, z2)

has all the properties specified above. If z2Pxk there exists an s(2) with

k < s(2) < s(1) such that ¬z2Pxs(2). Let z3 = xs(2). If ¬z3Pxk we are

done because the sequence (z1, z2, z3) has all the properties specified above.

Otherwise, we continue in the same manner. Since xk = oS(xk, . . . , xm),

after finitely many steps we arrive at an alternative zt with ¬ztPxk. The

sequence (z1, . . . , zt) has all the properties specified above.

Suppose now that l(j) < s(1) ≤ l(j + 1) for some j with 1 ≤ j ≤ r − 1.

Then z1Pxl(i) for all i = j + 1, . . . , r− 1. Define z2 = xs(1)−1. Then ¬z1Pz2

and again either z1Pxl(r), or z2Pxl(r). Define

s(2) = min{h | oS(xh, . . . , xm) = z2}.

Observe that s(2) < s(1). If s(2) ≤ l(1) we can use the same argument as

in the case where s(1) ≤ l(1) to construct a sequence (z1, . . . , zt) with the

desired properties. If l(i) < s(2) ≤ l(i + 1) for some i with 1 ≤ i ≤ r − 1,

define z3 = xs(2)−1. Then ¬z2Pz3, and if i < j, then z2Pxl(h) for all

h = i+ 1, . . . , j. Define

s(3) = min{h | oS(xh, . . . , xm) = z3}.

Again, either s(3) ≤ l(1) and we can follow the proof for the case where

s(1) ≤ l(1), or l(h) < s(3) ≤ l(h + 1) for some h with 1 ≤ h ≤ r − 1.

Continuing in this manner we see that after finitely many steps we arrive

at an index s(K) with s(K) ≤ l(1) and we can follow the argument in the

proof for the case where s(1) ≤ l(1). This proves the existence of a sequence

(z1, . . . , zt) with the desired properties.
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Sufficiency: Let x ∈ X. If Y (x) = ∅, then xPy for all y 6= x since P

is complete. Hence, x = oS(x1, . . . , xm) for any agenda (x1, . . . , xm) with

xm = x and we are done.

Let Y (x) 6= ∅. Then there exists a set of alternatives Z(x) with x /∈ Z(x)

and an ordering (z1, . . . , zt) of the alternatives in Z(x) such that

• for all y ∈ Y (x), there exists an s, 1 ≤ s ≤ t, with zsPy,

• ¬zl+1Pzl for all l = 1, . . . , t− 1,

• ¬z1Px.

We now define an agenda (w1, . . . , wr) with Y (x) ∪ Z(x) = {w1, . . . , wr}
and oS(w1, . . . , wr) = z1. Let Y ′ = Y (x) \ Z(x). If Y ′ = ∅, then let

r = t and ws = zs for all s = 1, . . . , t. In this case it immediately follows

that oS(w1, . . . , wr) = z1. If Y ′ 6= ∅ let (w1, . . . , wr) be the agenda that is

obtained if all y ∈ Y ′ with ztPy (if any) are placed between zt−1 and zt, all

y ∈ Y ′ with ¬ztPy and zt−1Py (if any) are placed between zt−2 and zt−1,

and so on, and finally all y ∈ Y ′ with ¬zsPy for all s = 2, . . . , t, and z1Py (if

any) are placed before z1. Then, by definition Y (x)∪Z(x) = {w1, . . . , wr},
and oS(w1, . . . , wr) = z1.

If Y (x) ∪ Z(x) ∪ {x} = X, then it follows that

x = oS(x,w1, . . . , wr).

If X \ (Y (x) ∪ Z(x) ∪ {x}) = {x1, . . . , xm−r−1}, where r ≤ m− 2, then

x = oS(x1, . . . , xm−r−1, x, w1, . . . , wr).

This proves sufficiency.

2. Let P be asymmetric. The proof is very similar to the proof for a complete

relation P .

Necessity: Let xk = oS(x1, . . . , xm). Nothing has to be proved if Y (xk) = ∅.
Hence, let Y (xk) 6= ∅ and let Y (xk) = {xl(1), . . . , xl(r)}, where l(1) < l(2) <

. . . < l(r). From Lemma 4.2 it follows that k < l(1). We now construct a

sequence (z1, . . . , zt) with the following properties:
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• ¬zlPzl+1 for all l = 1, . . . , t− 1.

• ¬ztPxk.

• x 6= zs for all s = 1, . . . , t.

• For all j = 1, . . . , r, there exists an s, 1 ≤ s ≤ t, with ¬xl(j)Pzs.

Again, renumbering the alternatives such that z′s = zt−s+1 for s = 1, . . . , t,

and defining Z(xk) = {z′1, . . . , z′t}, this will prove necessity.

Define z1 = oS(xl(r), xl(r)+1, . . . , xm) and

s(1) = min{h | oS(xh, . . . , xm) = z1}.

Since xk = oS(x1, . . . , xm) it follows that s(1) > k.

Suppose s(1) ≤ l(1). Then z1Pxl(j), which implies ¬xl(j)Pz1 for all j =

1, . . . , r − 1, by asymmetry of P . If ¬z1Pxk it follows that z1 6= xl(r) and

hence z1Pxl(r). Since P is asymmetric, the latter implies that ¬xl(r)Pz1.

In this case we are done because the sequence (z1) has all the properties

specified above. If z1Pxk, define z2 = xs(1)−1. Then ¬z1Pz2, and either z1 6=
xl(r) and hence z1Pxl(r), which implies that ¬xl(r)Pz1 since P is asymmetric.

Or z1 = xl(r) and hence ¬xl(r)Pz2. If ¬z2Pxk we are done because the

sequence (z1, z2) has all the properties specified above. If z2Pxk there exists

an s(2) with k < s(2) < s(1) such that ¬z2Pxs(2). Let z3 = xs(2). If

¬z3Pxk we are done because the sequence (z1, z2, z3) has all the properties

specified above. Otherwise, we continue in the same manner. Since xk =

oS(xk, . . . , xm), after finitely many steps we arrive at an alternative zt with

¬ztPxk. The sequence (z1, . . . , zt) has all the properties specified above.

Suppose now that l(j) < s(1) ≤ l(j + 1) for some j with 1 ≤ j ≤ r − 1.

Then z1Pxl(i) for all i = j + 1, . . . , r − 1, which implies that ¬xl(i)Pz1 for

all i = j + 1, . . . , r − 1, since P is asymmetric. Define z2 = xs(1)−1. Then

¬z1Pz2 and again either ¬xl(r)Pz1, or ¬xl(r)Pz2. Define

s(2) = min{h | oS(xh, . . . , xm) = z2}.

Observe that s(2) < s(1). If s(2) ≤ l(1) we can use the same argument as

in the case where s(1) ≤ l(1) to construct a sequence (z1, . . . , zt) with the
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desired properties. If l(i) < s(2) ≤ l(i + 1) for some i with 1 ≤ i ≤ r − 1,

define z3 = xs(2)−1. Then ¬z2Pz3, and if i < j, then z2Pxl(h) for all

h = i + 1, . . . , j, which implies that ¬xl(h)Pz2 for all h = i + 1, . . . , j.

Define

s(3) = min{h | oS(xh, . . . , xm) = z3}.

Again, either s(3) ≤ l(1) and we can follow the proof for the case where

s(1) ≤ l(1), or l(h) < s(3) ≤ l(h + 1) for some h with 1 ≤ h ≤ r − 1.

Continuing in this manner we see that after finitely many steps we arrive

at an index s(K) with s(K) ≤ l(1) and we can follow the argument in the

proof for the case where s(1) ≤ l(1). This proves the existence of a sequence

(z1, . . . , zt) with the desired properties.

Sufficiency: Let x ∈ X. If Y (x) = ∅, then ¬yPx for all y 6= x. Hence,

x = oS(x1, . . . , xm) for any agenda (x1, . . . , xm) with x1 = x and we are

done.

Let Y (x) 6= ∅. Then there exists a set of alternatives Z(x) with x /∈ Z(x)

and an ordering (z1, . . . , zt) of the alternatives in Z(x) such that

• for all y ∈ Y (x), there exists an s, 1 ≤ s ≤ t, with ¬yPzs,

• ¬zl+1Pzl for all l = 1, . . . , t− 1,

• ¬z1Px.

We now define an agenda (w1, . . . , wr) with Y (x) ∪ Z(x) = {w1, . . . , wr}
and oS(w1, . . . , wr) = z1. Let Y ′ = Y (x) \ Z(x). If Y ′ = ∅, then let

r = t and ws = zs for all s = 1, . . . , t. In this case it immediately follows

that oS(w1, . . . , wr) = z1. If Y ′ 6= ∅ let (w1, . . . , wr) be the agenda that is

obtained if all y ∈ Y ′ with ¬yPzt (if any) are placed after zt, all y ∈ Y ′

with yPzt and ¬yPzt−1 (if any) are placed between zt−1 and zt, and so on,

and finally all y ∈ Y ′ with yPzs for all s = 2, . . . , t, and ¬yPz1 (if any) are

placed between z1 and z2. Then, by definition Y (x)∪Z(x) = {w1, . . . , wr},
and oS(w1, . . . , wr) = z1.

If Y (x) ∪ Z(x) ∪ {x} = X, then

x = oS(x,w1, . . . , wr).
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If X \ (Y (x) ∪ Z(x) ∪ {x}) = {x1, . . . , xm−r−1}, where r ≤ m − 2, then

¬xsPx for all s = 1, . . . ,m− r − 1, which implies that

x = oS(x, x1, . . . , xm−t(r)−1, w1, . . . , wr).

This proves sufficiency.

�

Proof of Corollary 4.2: Let P be asymmetric. Assume first that x =

oS(x1, . . . , xm) for some agenda (x1, . . . , xm) and let y ∈ X, y 6= x. If ¬yPx,

then define z0 = x and z1 = y. If yPx, then by Theorem 4.1 there exists a

sequence of alternatives (z1, . . . , zt) with the following properties:

• There exists an s, 1 ≤ s ≤ t, such that ¬yPzs,

• ¬zl+1Pzl for all l = 1, . . . , t− 1,

• ¬z1Px.

This proves that x is in the top cycle of P .

For the reverse, let x be in the top cycle of P and let Y (x) = {y | yPx and ¬xPy}.
If Y (x) = ∅, then x = oS(x1, . . . , xm) for some agenda (x1, . . . , xm) by Theorem 4.1

and we are done. Suppose Y (x) = {y1, . . . , yr} for some r ≥ 1. Since x is in the

top cycle of P , for all l = 1, . . . , r, there exists a sequence of distinct alternatives

(wl
1, . . . , w

l
s(l)) with wl

1 = yl,¬wl
kPw

l
k+1 for all k = 1, . . . , s(l), and ¬wl

s(l)Px.

For l = 1, . . . , r, we now inductively define sequences of distinct alternatives

zl as follows: For l = 1, define s̄(1) = s(1) and

z1 = (w1
s̄(1), . . . , w

1
1).

For l = 2, let z2 = z1, if y2 ∈ {w1
1, . . . , w

1
s̄(1)}. Otherwise, if y2 /∈ {w1

1, . . . , w
1
s̄(1)}

let s̄(2) ∈ {1, . . . , s(2)− 1} be the minimal s with the property that

w2
s+1 ∈ {w1

1, . . . , w
1
s̄(1)}.

If there is no such s define s̄(2) = s(2). Then define

z2 = (w1
s̄(1), . . . , w

1
1, w

2
s̄(2), . . . , w

2
1).
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For ease of presentation we assume that y2 /∈ {w1
1, . . . , w

1
s̄(1)} and then continue

to define z3. If y3 ∈ {w1
1, . . . , w

1
s̄(1), w

2
1, . . . , w

2
s̄(2)}, define z3 = z2. Otherwise, if

y2 /∈ {w1
1, . . . , w

1
s̄(1), w

2
1, . . . , w

2
s̄(2)} let s̄(3) ∈ {1, . . . , s(3) − 1} be the minimal s

with the property that

w3
s+1 ∈ {w1

1, . . . , w
1
s̄(1), w

2
1, . . . , w

2
s̄(2)}.

If there is no such s define s̄(3) = s(3). Then define

z3 = (w1
s̄(1), . . . , w

1
1, w

2
s̄(2), . . . , w

2
1, w

3
s̄(3), . . . , w

3
1).

Continuing in this manner and assuming that yk /∈
⋃k−1

l=1 {wl
1, . . . , w

l
s̄(l)} for all

k = 2, . . . , r,21 we arrive at the sequence

zr = (w1
s̄(1), . . . , w

1
1, w

2
s̄(2), . . . , w

2
1, . . . , w

r
s̄(r), . . . , w

r
1).

Observe that by construction zr has the property that yk ∈
⋃r

l=1{wl
1, . . . , w

l
s̄(l)}

for all k = 1, . . . , r, and that

oS(w1
s̄(1), . . . , w

1
1, w

2
s̄(2), . . . , w

2
1, . . . , w

r
s̄(r), . . . , w

r
1) ∈ {w1

s(1), w
2
s(2), . . . , w

r
s(r)}.

Since ¬wl
s(l)Px for all l = 1, . . . , r, it follows that

x = oS(x,w1
s̄(1), . . . , w

1
1, w

2
s̄(2), . . . , w

2
1, . . . , w

r
s̄(r), . . . , w

r
1).

If X \ {x} =
⋃r

l=1{wl
1, . . . , w

l
s̄(l)}, we are done. Otherwise, let

X \

(
{x} ∪

r⋃
l=1

{wl
1, . . . , w

l
s̄(l)}

)
= {x1, . . . , xt}.

Since P is asymmetric and Y (x) ⊂
⋃r

l=1{wl
1, . . . , w

l
s̄(l)}, it follows that ¬xsPx for

all s = 1, . . . , t. Hence,

x = oS(x, x1, . . . , xt, w
1
s̄(1), . . . , w

1
1, w

2
s̄(2), . . . , w

2
1, . . . , w

r
s̄(r), . . . , w

r
1).

21The proof for the case where yk ∈
⋃k−1

l=1 {wl
1, . . . , w

l
s̄(l)} for some k and hence, zk = zk−1 is

similar and hence omitted.
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This proves the claim that any alternative x in the top cycle is an outcome

for some agenda under the successive procedure.

�

Proof of Theorem 5.1: The theorem is proved by showing that (i) and (ii) are

equivalent to (iii).

(i) ⇐⇒ (iii): Assume (iii), i.e. xPy and ¬yPx for all y 6= x. Then, by

Theorem 4.1, OS(P ) = {x}, i.e. (i) holds. Assume (i), i.e. OS(P ) = {x}. Then,

x = oS(x1, . . . , xm) for any agenda with xm = x. By definition of the successive

procedure this implies that x = oS(xk, . . . , xm) for all k = 1, . . . ,m − 1, and

hence, xPxk for all k = 1, . . . ,m− 1. This already establishes the proof when P

is asymmetric. As for the complete case, suppose by way of contradiction that

yPx for some y 6= x. Then oS(x, y) = y which implies that x 6= oS(x1, . . . , xm)

for any agenda with xm−1 = x and xm = y by Lemma 4.1. This contradicts our

assumption that OS(P ) = {x}. Hence, also for P complete, OS(P ) = {x} implies

that (iii) holds.

(ii) ⇐⇒ (iii): Assume (iii), i.e. xPy and ¬yPx for all y 6= x. Then, by The-

orem 3.1, OA(P ) = {x}, i.e. (ii) holds. Assume (ii), i.e. OA(P ) = {x}. First

consider the case where P is complete. Then x = oA(x1, . . . , xm) for all agen-

das (x1, . . . , xm). Suppose by way of contradiction that there exists y with yPx.

Then, by Lemma 3.1, x 6= oA(x1, . . . , xm−2, x, y), where (x1, . . . , xm−2) is an ar-

bitrary ordering of the alternatives different from x and y. This contradicts our

assumption that OA(P ) = {x}. Hence, OA(P ) = {x} implies that ¬yPx for all

y 6= x. Since P is complete, this implies (iii).

Next consider the case where P is asymmetric. Suppose by way of contradic-

tion that there exists y with ¬xPy. We then claim that x 6= oA(x1, . . . , xm) for

any agenda with x1 = y and xm = x. The claim is proved by induction over m.

If m = 2 the claim is immediate. Suppose now that the claim is true for m ≥ 2

and consider the agenda (x1, . . . , xm+1) with x1 = y and xm+1 = x. Suppose by

way of contradiction that x = oA(x1, . . . , xm+1). By definition of the amendment
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procedure,

oA(x1, . . . , xm+1) ∈ {oA(x1, x3, . . . , xm+1), oA(x2, . . . , xm+1)}.

Since the agenda (x1, x3, . . . , xm+1) has m alternatives, it follows that x 6=
oA(x1, x3, . . . , xm+1). Then, x = oA(x1, . . . , xm+1) implies that x = oA(x2, . . . , xm+1)

and

xPoA(x1, x3, . . . , xm+1). (10)

Since x1 = y and ¬xPy it follows that oA(x1, x3, . . . , xm+1) = xk for some k with

3 ≤ k ≤ m. Lemma 3.3 then implies that xk = oA(xk, . . . , xm+1) = x̄k. But then,

¬x̄m+1Pxk by Lemma 3.2. Since x̄m+1 = xm+1 = x this is a contradiction to (10).

This proves our claim.

Hence, OA(P ) = {x} implies that xPy for all y 6= x. Finally, by asymmetry

of P we conclude that ¬yPx for all y 6= x, i.e. (iii) holds.

�

Proof of Proposition 5.2: Consider first the case where 1 ≤ q < q′ ≤ bn
2
c+ 1

and let P ∈ Φ(q). Then, by definition of Φ(q) there exists an alternative x such

that for all y 6= x,

#{i |xPiy} ≥ q and #{i | yPix} < q. (11)

Observe that #{i | yPix} = n − #{i |xPiy} < q implies that #{i |xPiy} ≥ q

since q < bn
2
c+ 1. Hence, (11) is satisfied if and only if

#{i |xPiy} > n− q.

This immediately implies that Φ(q) ⊆ Φ(q′) if q < q′ < bn
2
c + 1. It remains to

consider the case where q = bn
2
c and q′ = bn

2
c+ 1. If n is odd, then by what we

have shown above, P ∈ Φ(bn
2
c) if and only if there exists an alternative x such

that for all y 6= x,

#{i |xPiy} > n−
⌊n

2

⌋
=
n+ 1

2
=
⌊n

2

⌋
+ 1.

This implies

#{i | yPix} <
n− 1

2
=
⌊n

2

⌋
<
⌊n

2

⌋
+ 1.
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Hence, P ∈ Φ(bn
2
c+ 1), i.e. Φ(bn

2
c) ⊆ Φ(bn

2
c+ 1). If n is even, then by the above

P ∈ Φ(bn
2
c) if and only if there exists an alternative x such that for all y 6= x,

#{i |xPiy} > n−
⌊n

2

⌋
=
n

2
.

This implies

#{i |xPiy} ≥
n

2
+ 1

and

#{i | yPix} <
n

2
<
n

2
+ 1.

Hence, also for n even we conclude that P ∈ Φ(bn
2
c + 1), which implies that

Φ(bn
2
c) ⊆ Φ(bn

2
c+ 1).

Next, consider the case where bn
2
c + 1 ≤ q′ < q ≤ n and let P ∈ Φ(q). Since

the majority relation is asymmetric for quotas greater than or equal to bn
2
c + 1

by definition of Φ(q) there exists a unique alternative x such that for all y 6= x,

#{i |xPiy} ≥ q.

Since q > q′ this immediately implies that Φ(q) ⊆ Φ(q′).

�

Proof of Proposition 5.3: Suppose by way of contradiction that there exists

a q ∈ {1, . . . , n − 1} and an alternative x ∈ X such that x ∈ OA(P , q) and

x /∈ OA(P , n). By Theorem 3.1 the latter implies that there exists an alternative

y with yPix for all i = 1, . . . , n. Since x ∈ OA(P , q), by Theorem 3.1 there exists

z(y) with

#{i | z(y)Piy} ≥ q (12)

and #{i | z(y)Pix} < q (13)

However, yPix for all i = 1, . . . , n, and (12) imply that #{i | z(y)Pix} ≥ q

contradicting (13). This proves the claim that OA(P , q) ⊆ OA(P , n).

�

43



Proof of Proposition 5.4, 1.: Let q, q′ be given with bn
2
c + 1 ≤ q < q′ ≤ n.

Then, the dominance relation P derived from majority voting with quota q is

asymmetric. Let x ∈ OS(P , q). If, for all y ∈ X, #{i | yPix} < q′, then x ∈
OS(P , q′) and we are done. Otherwise, let Y (x) = {y |#{i | yPix} ≥ q′} 6= ∅.
Then, for all y ∈ Y (x), #{i | yPix} ≥ q, and by Theorem 4.1 there exists a

sequence of distinct alternatives (z1, . . . , zt) with the following properties:

• for all y with #{i | yPix} ≥ q there exists an s, 1 ≤ s ≤ t, with #{i | yPizs} <
q,

• #{i | zl+1Pizl} < q for all l = 1, . . . , t− 1,

• #{i | z1Pix} < q.

Since q′ > q this implies that

• for all y with #{i | yPix} ≥ q′ there exists an s, 1 ≤ s ≤ t, with #{i | yPizs} <
q′,

• #{i | zl+1Pizl} < q′ for all l = 1, . . . , t− 1,

• #{i | z1Pix} < q′.

Hence, by Theorem 4.1 x ∈ OS(P , q′) which proves the claim.

�

Proof of Proposition 5.5:

1. Let q ∈ {1, . . . , n} and let x ∈ OA(P , q). Suppose by way of contradiction

that x is Pareto dominated by some alternative y, i.e. yPix for all voters i.

Then y ∈ Y (x) and by Theorem 3.1 there exists an alternative z(y) such

that

#{i | z(y)Piy} ≥ q (14)

and #{i | z(y)Pix} < q. (15)

However, since yPix for all voters i, (14) implies that #{i | z(y)Pix} ≥ q

contradicting (15). Hence, x is not Pareto dominated by any alternative y.
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2. Let x ∈ X and let q ∈ {1, n}. Then Y (x) = {y | yPix for all i}, i.e. Y (x) is

the set of all alternatives that Pareto dominate x. From 1. we know that

OA(P , q) ⊆ {x | there exists no y with yPix for all i}. Hence, it remains to

show that any alternative x, which is not Pareto dominated, is an element

of OA(P , q). If x is not Pareto dominated by any other alternative, then

Y (x) = ∅ and Theorem 3.1 implies that x ∈ OA(P , q).

�

Proof of Proposition 5.6, 1.: If q = 1, then Y (x) = {y | yPix for all i}. Hence,

if x is an alternative that is not Pareto dominated by any other alternative, then

Y (x) = ∅, and Theorem 4.1 implies that x ∈ OS(P , 1). Now let x ∈ OS(P , 1)

and suppose by way of contradiction that x is Pareto dominated by y. Then

y ∈ Y (x) and by Theorem 4.1 there exists a set of alternatives Z(x) and an

ordering (z1, . . . , zt) of the alternatives in Z(x) such that the following conditions

are satisfied:

• there exists an s ∈ {1, . . . , t} and a voter j with zsPjy,

• zlPizl+1 for all voters i and for all l = 1, . . . , t− 1,

• xPiz1 for all voters i.

However, this implies that

xPjz1Pjz2 . . .PjzsPjy

contradicting the assumption that y Pareto dominates x. Hence, no alternative

in OS(P , 1) is Pareto dominated, which proves the claim.

�
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